Description

Predicting forest cover type from cartographic variables only (no remotely sensed data). The actual forest cover type for a given observation (30 x 30 meter cell) was determined from US Forest Service (USFS) Region 2 Resource Information System (RIS) data. Independent variables were derived from data originally obtained from US Geological Survey (USGS) and USFS data. Data is in raw form (not scaled) and contains binary (0 or 1) columns of data for qualitative independent variables (wilderness areas and soil types). This study area includes four wilderness areas located in the Roosevelt National Forest of northern Colorado. These areas represent forests with minimal human-caused disturbances, so that existing forest cover types are more a result of ecological processes rather than forest management practices. Some background information for these four wilderness areas: Neota (area 2) probably has the highest mean elevational value of the 4 wilderness areas. Rawah (area 1) and Comanche Peak (area 3) would have a lower mean elevational value, while Cache la Poudre (area 4) would have the lowest mean elevational value. As for primary major tree species in these areas, Neota would have spruce/fir (type 1), while Rawah and Comanche Peak would probably have lodgepole pine (type 2) as their primary species, followed by spruce/fir and aspen (type 5). Cache la Poudre would tend to have Ponderosa pine (type 3), Douglas-fir (type 6), and cottonwood/willow (type 4). The Rawah and Comanche Peak areas would tend to be more typical of the overall dataset than either the Neota or Cache la Poudre, due to their assortment of tree species and range of predictive variable values (elevation, etc.) Cache la Poudre would probably be more unique than the others, due to its relatively low elevation range and species composition.

Related Papers

  • Chris Giannella and Bassem Sayrafi. An Information Theoretic Histogram for Single Dimensional Selectivity Estimation. Department of Computer Science, Indiana University Bloomington. [link]
  • Arto Klami and Samuel Kaski and Ty n ohjaaja and Janne Sinkkonen. HELSINKI UNIVERSITY OF TECHNOLOGY Department of Engineering Physics and Mathematics Arto Klami Regularized Discriminative Clustering. Regularized Discriminative Clustering. [link]
  • Nikunj C. Oza and Stuart J. Russell. Experimental comparisons of online and batch versions of bagging and boosting. KDD. 2001. [link]
  • Johannes Furnkranz. Round Robin Rule Learning. Austrian Research Institute for Artificial Intelligence. [link]
  • Zoran Obradovic and Slobodan Vucetic. Challenges in Scientific Data Mining: Heterogeneous, Biased, and Large Samples. Center for Information Science and Technology Temple University. [link]
  • Joao Gama and Ricardo Rocha and Pedro Medas. Accurate decision trees for mining high-speed data streams. KDD. 2003. [link]
  • [link]

Related datasets