Description

This dataset has recordings of a gas sensor array composed of 8 MOX gas sensors, and a temperature and humidity sensor. This sensor array was exposed to background home activity while subject to two different stimuli: wine and banana. The responses to banana and wine stimuli were recorded by placing the stimulus close to the sensors. The duration of each stimulation varied from 7min to 2h, with an average duration of 42min. This dataset contains a set of time series from three different conditions: wine, banana and background activity. There are 36 inductions with wine, 33 with banana and 31 recordings of background activity. One possible application is to discriminate among background, wine and banana. This dataset is composed of two files: HT_sensor_dataset.dat (zipped), where the actual time series are stored, and the HT_Sensor_metadata.dat, where metadata for each induction is stored. Each induction is uniquely identified by an id in both files. Thus, metadata for a particular induction can be easily found by matching columns id from each file. We also made available python scripts to exemplify how to import, organize and plot our data. The scripts are available on GitHub: [Web Link] For each induction, we include one hour of background activity prior to and after the stimulus presentation. Time series were recorded at one sample per second, with minor variations at some data points due to issues in the wireless communication. For details on which sensors were used and how the time series is organized, see Attribute Information below. The metadata stored in file HT_Sensor_metadata.dat is divided in the following columns: * id: identification of the induction, to be matched with id in file HT_Sensor_dataset.dat; * date: day, month and year when this induction was recorded; * class: what was used to generate this induction (wine, banana or background); * t0: time in hours in which the induction started (represents the time zero in file HT_Sensor_dataset.dat); * dt: interval that this induction lasted.

Related datasets