Description

This data was used by Hong and Young to illustrate the power of the optimal discriminant plane even in ill-posed settings. Applying the KNN method in the resulting plane gave 77% accuracy. However, these results are strongly biased (See Aeberhard's second ref. above, or email to stefan '@' coral.cs.jcu.edu.au). Results obtained by Aeberhard et al. are : RDA : 62.5%, KNN 53.1%, Opt. Disc. Plane 59.4% The data described 3 types of pathological lung cancers. The Authors give no information on the individual variables nor on where the data was originally used. Notes: - In the original data 4 values for the fifth attribute were -1. These values have been changed to ? (unknown). (*) - In the original data 1 value for the 39 attribute was 4. This value has been changed to ? (unknown). (*)

Related Papers

  • Jinyan Li and Limsoon Wong. Using Rules to Analyse Bio-medical Data: A Comparison between C4.5 and PCL. WAIM. 2003. [link]
  • Glenn Fung and Sathyakama Sandilya and R. Bharat Rao. Rule extraction from Linear Support Vector Machines. Computer-Aided Diagnosis & Therapy, Siemens Medical Solutions, Inc. [link]
  • Manoranjan Dash and Huan Liu. Hybrid Search of Feature Subsets. PRICAI. 1998. [link]
  • [link]

Related datasets